A Facile Synthesis of α -Phenylthio- α , β -Unsatuated Esters

Gui Sheng DENG, Zhi Zhen HUANG, Xian HUANG*

Department of Chemistry, Zhejiang University, Hangzhou 310028

Abstract: α -Phenylthio- α , β -unsaturated esters 6 were synthesized by Witting reaction of 3, which were prepared by a phenylsulfenyllation-trans-ylidation reaction.

Keywords: Witting reaction, arsonium ylides, unsaturated esters, synthesis.

 α -Phenylthio-a,b-unsaturated esters **6** are in great demand as Michael acceptors¹, Diels-Alder dienophiles². Many methods toward their synthesis have been described so far^{1, 3-7}. However, these methods are deficient in some respects, such as low yields, multistep sequence or severe reaction condition. In recent years, chemists are interest in the synthesis of a-functionalize arsonium ylides, but also the functionalize groups can be introduced on the a-position of α , β -unsaturated compounds through their Witting reaction. Based upon our previous experience⁸⁻¹², thesis compounds can be synthesized concisely and efficiently through Witting reaction of the corresponding arsonium ylides, but difficultly by the corresponding phosphonium ylides due to theirs poor activity¹³. In this letter, we describe the preparation of α -phenylthioo- α , β -unsaturated esters **6** through α -phenylthio alkoxycarbonylmethylene triphenylarsoranes **3**.

 $\frac{\text{Scheme A}}{\text{Ph}_3\text{As}=\text{CHCO}_2\text{R}+\text{PhSCI}} \xrightarrow[r.t.]{\text{dry benzene}} SPA \qquad \text{Ph}_3\text{As}=\text{CCO}_2\text{R} + [\text{Ph}_3\overset{+}{\text{As}}\text{As}\text{CH}_2\text{CO}_2\text{R}]\text{CI}^{-1}$ $1 \qquad 2 \qquad 3 \qquad 4$

a, $R=CH_3$; b, $R=C_2H_5$

Ylides 3^{14} were almost quantitatively synthesized through the *trans*-ylidation reaction of alkoxycarbonylmethylene triphenylarsoranes **1** (2 equiv.), which were synthesized according to the literature¹⁵, with phenylsulfenyl chloride $2^{16,17}$ (1 equiv.) in benzene at room temperature (**Scheme A**), m.p. 185-186°C (**3a**, R=CH₃), 174-175°C (**3b**,

^{*}E-mail: huangx@public.hz.zj.cn

R=C₂H₅) and confirmed by 1H NMR, MS, IR and elemental analysis.

As expected, Ylides **3** can undergo Witting reaction with a great diversity of aromatic and aliphatic aldehydes **5** under mild condition to afford (*z*)- α -phenylthio- α , β -unsaturated esters **6** as dominant products in good yields¹⁸ (**Scheme B**). The results were listed in **Table 1**.

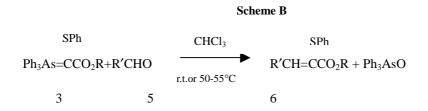


 Table 1
 Witting-type reaction between a-phenylthio alkoxycarbonylmethylene triphnylarsorane 3 and aldehydes 5

Entry	R′	R	Reaction	Reaction Temperature(°C)	Yield(%) ^a	Z/E ^b
6a ^c	$p-O_2NC_6H_4$	Me	5	10	99	95/5
6b ^c	Ph	Me	13	50	97	75/25
6c ^d	p-BrC ₆ H ₄	Me	12	50	98	70/30
6d ^c	CH ₃ CH ₂ CH ₂	Me	24	50	78	100/0
6e ^c	Ph	Et	25	10	84	75/25
6f ^c	CH ₃ CH ₂ CH ₂	Et	24	50	75	95/5
6g ^c	$p-O_2NC_6H_4$	Et	7	8	91	90/10

Acknowledgments

Project 29502006 was supported by the National Natural Science Foundation of China.

References and Notes

- 1. H. Hagiwara, K. Nakayama, H. Uda, Bull. Chem. Soc. Jpn., 1975, 48, 3769.
- 2. Q. B. Cass, A.A. Jaxa Chamiec, P. G. Sammes, J. Chem. Soc., Chem. Commun., 1981, 1248.
- 3. P.Bbarbier, C. Benezra, Tetrahetron Letter., 1982, 23, 3511.
- 4. S. Yamagiwa, N. Hoshi, H.Sato, H. Kosugi, H. Uda, J. Chem. Soc., Perkin Tras. 1, 1978, 214.
- 5. M. Oki, K. Koobayashi, bull. Chem. Soc. Jpn., 1970, 43, 1223.
- 6. H. J. Monteiro, A. L. Gamal, Synthesis, 1975, 437.
- 7. J. Durman, J. I. Grayson, P. G. Hunt, S.Warren, J. Chem. Soc., Perkin Trans. 1, 1986, 1939.
- 8. Z. Z. Huang, X. Huang, Y. Z. Huang, J. Organomet. Chem., 1995, 490, C23-C26.
- 9. G. S. Deng, Z. Z. Huang, X. C. Yu, X. Huang, J. Chem. Res. (S), 1999, 144.
- 10. G. S. Deng, Z. Z. Huang, X. Huang, Org. Prep. Proceed. Int., 1999, 31 (4), 453.
- 11. S. Deng, Z. Z. Huang, X. Huang, Chin. Chem. Lett., 1999, 10 (5), 349.
- 12. S. Deng, Z. Z. Huang, X. Huang, Chin. Chem. Lett., 2000, 11 (4), 293.
- 13. K. Saikachi, s. .nakamura, yakugaku Zasshi, 1969, 89 (10), 1446.
- 14. A solution of phenylsulfenyl chloride 2 (11 mmol) in 50 mL dry benzene was added dropwise to a stirred solution of methoxycarbonylmethylene triphenylene 1a (22 mmol) in 250 mL dry benzene at 11 for 2 hour. After the suspension was filtrated, the residue was reduced pressure and recrystallized in EtoH to give 4.93 g α -phenylthio methoxy-carbonylmethylene

A Facile Synthesis of α -Phenylthio- α , β -Unsatuated Esters

triphenylarsorane **3a** in 92 % yield as white crystal, m.p.185-186°C, ¹HNMR (60 MHz, CDCl₃, TMS) δ (ppm): 7.37-7.07(m, 20 H) and 3.63 (s, 3H); *m/z* 486 (M+, 23.76 %) and 152 (100.00); IR (KBr) v: 1600 (vs), 1485 (s), 1300 (vs), 760 (s), 720(s)cm⁻¹. Anal. Calcd. For C₂₇H₂₃AsO₂S: C, 66. 67; H, 4.77, Found: C67.19; H 4.65.

It was similar to the above procedure to rescuer the arsonium salt **4b** in 93%, and obtain **3b** in 91% yield as white crystal, m. p. 174-175°C, 1H NMR (60 MHz, CDCl₃, TMS) δ (ppm): 7.83-7.13 (m, 20H), 1.07 (t, 3H, *J*= 7Hz); *m/z* 500(M⁺) and (100.00); IR (KBr) v: 1610(vs), 1485 (s), 1445 (s), 1280(vs), 740 (vs), 680 (vs)cm-1. Ana. Calcd. For C₂₈H₂₅AsO₂S: C, 67.20; H, 5.03. Found: C, 67.17; H, 4.93.

- 15. Y. Z. Huang, X. Y. Dai, W. Y. Diing, et al., Acta Chem. Sinica, 1978, 36, 215.
- 16. W. H. Mueller, P. E. Butler, J. Am. Chem. Soc., 1968, 90, 2075.
- 17. Reagents for Organic Synthesis, **1975**, *5*, 523.
- 18. The mixture of a-phenylthio alkoxycarbonylthylene triphenlarsorane **3a** (1mmol) and pnitrobenzaldehyde **5a** (0.9 mmol) in chloroform (2 mL) was stirred under N₂ atmosphere for 5 h. The progress of reaction was examined by TLC. After finishing the reaction, the mixture of reaction was concentrated, and separated by flash chromatograph over silica gel (eluant 4:1 light petrol ether (30-60°C) diethyl ether) to afford the *Z* and *E* isomer of **6a**. m. p. 54-61°C. ¹HNMR (60 MHz, CDCl₃, TMS) δ (ppm):7.90-7.75 (m, 2H), 8.07 (*Z*), 6.78 (*E*) (s, *Z*+*E*=1H), 7.37-7.20 (m 5H), 3.67 (*Z*), 3.54 (E) (s, *Z*+*E*=3H). IR (KBr) v:1730(vs), 1620 (s), 1530 (vs) (NO₂), 1350 (vs), 1250 (vs), 850 (s), 730 (s), 690(s) cm⁻¹.

Received 12 March, 2002